Wednesday, July 31, 2024

e Learning

AppSheet e Learning

Overview:

An interactive app for math, vocabulary, memorization enthusiasts.
Challenges users with two-digit math problems, Word games, & Flashcard.
Includes addition, subtraction, Multiply, Dictionary, and User Define Flash Card Data.


Random questions.
Scoring system.
Immediate feedback.
Customization options.

How to Use:

Launch the app.
Start the quiz.
Solve math problems, word problem, and memorization.
Check your results.
Aim for a high score!


Open AppSheet Link

Open AppSheet Link












Sunday, July 28, 2024

Math Quiz 2 Digits

AppSheet Math Quiz 2 Digits

Overview:

An interactive app for math enthusiasts.  Challenges users with two-digit math problems.
Includes addition, subtraction, and Multiply. 

Random questions.  Scoring system. Immediate feedback. Time System.

How to Use:

Launch the app. Start the quiz. Solve math problems. Check your results.
Aim for a high score!


Open AppSheet Link

Open AppSheet Link





Monday, July 15, 2024

ACI318 BEAM BAR SINGLE REINFORCED DESIGN

Embed AppSheet in iFrame

Embed AppSheet in iFrame Example

ACI318 STIFFNESS FACTOR

 


 Please see Terms & Condition before use.

ACI318 CONCRETE SHEAR DESIGN

 


 Please see Terms & Condition before use.

ACI318 DEVELOPMENT LENGTH

 


 Please see Terms & Condition before use.

ACI318 RECTANGULAR COLUMN DESIGN

 


 Please see Terms & Condition before use.

Propped Using Double Integration Method with Mathcad


by Ernel Solis Filipinas (ernel_filipinas@yahoo.com).

 

https://drive.google.com/file/d/1PtNurT-ZXgc4HmASNSCz4cDi2q9de8eP/view?usp=drive_link

 

(For educational reference only)


Simply Supported Using Double Integration Method with Mathcad


by Ernel Solis Filipinas (ernel_filipinas@yahoo.com).

 

https://drive.google.com/file/d/1IzM_4rCl6s6R4vTUtwJZ_xGuX2hLnJcR/view?usp=drive_link

 

(For educational reference only)


Cantilever Using Double Integration Method with Mathcad


by Ernel Solis Filipinas (ernel_filipinas@yahoo.com).

 

https://drive.google.com/file/d/1qrjNU0HFYj6NookR9zsmCAfW4q3j07Hk/view?usp=drive_link

 

(For educational reference only)


2D BEAM ANALYSIS (DIRECT STIFFNESS METHOD) PYTHON PROGRAMMING

2D BEAM ANALYSIS v4 first created as FRAME ANALYSIS on 24 July 2009 using Excel VBA and updated on 10 July 2024 using Phyton by Ernel Solis Filipinas (ernel_filipinas@yahoo.com).

 

https://colab.research.google.com/drive/1wdXq5SDlW_SB7iB92fGpG7DxtxmjDlda#scrollTo=6bd5525a

 

(For educational reference only)

 

-----------------------------------------------------copy below-----------------------------------------------------

 


import math
import numpy as np
import matplotlib.pyplot as plt
import sys

## INPUT DATA

# Define joint coordinate [x,y] in m
jdat1 = np.array([
    [0,0],
    [1,0],
    [2,0],
    [3,0],
    [4,0],
    [5,0],
    [6,0],
    [7,0],
    [8,0],
    [9,0],
    [10,0]
    ])

# Define node/joint type [] where 1-Hinge, 2-Roller x, 3-Roller y, 4-Free, 5-Fixed Joints
jdat2 = np.array([[5],[4],[4],[4],[4],[4],[4],[4],[4],[4],[5]])

# Define  Moment Joint Load  in kNm
# External Force (+ve counter counter clockwise, -ve clockwise)
# Fixed End force (inverse of External Force)
jdat5 = np.array([[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]])

# Define Vertical Joint Load  in kN
# External Force (+ve going up, -ve going down)
# Fixed End force (inverse of External Force)
jdat6 = np.array([[0],[0],[0],[0],[0],[-4],[0],[0],[0],[0],[0]])

# Define element/member incidences (joint end1, joint end2)
mdat1 = np.array([[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11]])

# Define Modulus of Elasticity (kPa)
mdat2 = np.array([[200e6],[200e6],[200e6],[200e6],[200e6],[200e6],[200e6],[200e6],[200e6],[200e6]])

# Define Moment of Inertia (m4)
mdat3 = np.array([[5.208e-7],[5.208e-7],[5.208e-7],[5.208e-7],[5.208e-7],[5.208e-7],[5.208e-7],[5.208e-7],[5.208e-7],[5.208e-7]])

# Define Fixed End Moment for beam kNm # Make sure it is as per member incidence
#(+ve counter counter clockwise, -ve clockwise)
mdat4 = np.array([[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]])

# Define Fixed End Shear for beam kNm
#(+ve going up, -ve going down)
mdat5 = np.array([[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]])

#----------------------------------------------------------------------------------
#----------------------------------------------------------------------------------

#FEM Link
#https://blog.payrollschedule.net/#google_vignette
#https://engineering.purdue.edu/~ce474/Docs/Fixed%20End%20Moments.pdf
#https://mathalino.com/reviewer/strength-materials/fixed-end-moments-fully-restrained-beam#google_vignette



# Scale
dscale = 5000     #Deformation Scale
ascale = 200      #Arrow Scale

#----------------------------------------------------------------------------------
#----------------------------------------------------------------------------------

## CALCULATION FUNCTION
# Step 0---------------------------------------------------------------------------
def title_disclaimer():
    print("2D BEAM ANALYSIS v4 first created as FRAME ANALYSIS in 24 January 2009 using Excel VBA")
    print("10 July 2024 using Phyton")
    print("by Ernel Solis Filipinas.  \ne: ernel_filipinas@yahoo.com\n\n")
    print("Disclaimer:\n")
    print("No Liability is accepted by its software authors for any direct, ")
    print("indirect, consequential or incidental loss or damage arising out of ")
    print("the software use or any mistakes and negligence in developing this software.")
    print("The organisation or person using the software bears all risks and ")
    print("responsibility for the quality and performance of the software. \n")
    print("Reference:\n")
    print("Espejo, Isagani S. (2000). The Matrix Method - Computer-Aided Structural Analysis")
    print("Cañete, Alberto (2021). Principles of Matrix Structural Analysis\n")


#Step 1---------------------------------------------------------------------------

# Define functions checking number of joint and number of member
def check(jdat1,jdat2,jdat5,jdat6,mdat1, mdat2, mdat3, mdat4, mdat5):
    print("Step 1: Checking number of joint and number of member-----------------------\n")
    noj = jdat1.shape[0]
    nojdat2 = jdat2.shape[0]
    nojdat5 = jdat5.shape[0]
    nojdat6 = jdat6.shape[0]

    print ("Number of joints =" ,noj)

    if noj == nojdat2 and noj == nojdat5 and noj == nojdat6:
        print("The number joints and joint datum is OK")
    else:
        sys.exit("Number of joints not equal for jdat data")

    nom = mdat1.shape[0]
    nonmdat2 = mdat2.shape[0]
    nonmdat3 = mdat3.shape[0]
    nonmdat4 = mdat4.shape[0]
    nonmdat5 = mdat5.shape[0]


    print ("Number of members " ,nom)

    if nom == nonmdat2 and nom==nonmdat3 and nom==nonmdat4 and nom==nonmdat5:
        print("The number members and member datum is OK\n")
    else:
        sys.exit("Number of members not equal to nomdat data")


#Step 2---------------------------------------------------------------------------
# Define functions for NDF, TDOF
def DOF(jdat1,jdat2):
    print("Step 2: Compute for NDF & TDOF-----------------------\n")
    TDOF = 0
    noj = jdat1.shape[0]
    NDF = np.zeros(shape=(noj, 2),dtype=int)
    for i in range (0,noj):
        print("Joint: ", i+1)
        if jdat2[i] == 1: #Hinge
            NDF[i,0] = 0
            NDF[i,1] = TDOF + 1
            TDOF+=1
        elif jdat2[i] == 2: #Roller x
            NDF[i,0] = 0
            NDF[i,1] = TDOF + 1
            TDOF+=1
        elif jdat2[i] == 3: #Roller y
            NDF[i,0] = TDOF + 1
            NDF[i,1] = TDOF + 2
            TDOF+=2
        elif jdat2[i] == 4: #Free
            NDF[i,0] = TDOF + 1
            NDF[i,1] = TDOF + 2
            TDOF+=2
        elif jdat2[i] == 5: #Fixed
            NDF[i,0] = 0
            NDF[i,1] = 0

        else:
            print("Please check the joint data")
        print("NDF Array Y = ", NDF[i,0],"NDF Array M = ", NDF[i,1])
    print ("TDOF = ",TDOF,"\n")
    return NDF, TDOF

#Step 3---------------------------------------------------------------------------
# Define functions for Mcode
def MCODE(mdat1,NDF, TDOF):
    print("Step 4: Compute for Mcode-----------------------\n")
    nom = mdat1.shape[0]
    mcode = np.zeros(shape=(nom,4),dtype = int) # for beam only
    MDIFF = 0
    for i in range(0,nom):
        print("Member:",i+1)
        print("Member Incidence",mdat1[i,0],mdat1[i,1])
        #mcode[i,] = 0 # For beam only
        mcode[i,0] = NDF[mdat1[i,0]-1,0]
        mcode[i,1] = NDF[mdat1[i,0]-1,1]
        #mcode[i,] = 0 # For beam only
        mcode[i,2] = NDF[mdat1[i,1]-1,0]
        mcode[i,3] = NDF[mdat1[i,1]-1,1]
        print("mcode",mcode[i,0],mcode[i,1],mcode[i,2],mcode[i,3])
        MAX = 0
        MIN = TDOF
        for j in range (0,4):
            if mcode[i,j] == 0:
                continue
            elif mcode[i,j] > MAX:
                MAX = mcode[i,j]
            if mcode[i,j] < MIN:
                MIN = mcode[i,j]
        print("MAX",MAX)
        print("MIN",MIN)
        if (MAX-MIN) >= MDIFF:
            MDIFF = MAX - MIN

            print("MDIFF",MDIFF,"\n")

    HBW = MDIFF+1
    print("HBW",HBW,"\n")

    return mcode, HBW

#Step 4---------------------------------------------------------------------------
# Define functions for Qsys
def Q(jdat1,jdat5,jdat6, NDF,TDOF,MCODE):
    print("Step 3: Compute for Qsys-----------------------\n")
    noj = jdat1.shape[0]
    Qsys = np.zeros(shape=(TDOF),dtype = float)
    nom = mdat1.shape[0]
    F = np.zeros(shape=(noj),dtype = float)


    for i in range (0,noj):
        for j in range (0,2):
            if NDF[i,j] > 0:
                if j==0:
                    p = NDF[i,0]-1
                    r = jdat6[i]
                    Qsys[p] = r.item()
                    print("Qsys",NDF[i,0],"=", Qsys[p],"kN")
                if j==1:
                    q = NDF[i,1]-1
                    s = jdat5[i]
                    Qsys[q] = s.item()
                    print("Qsys",NDF[i,1],"=", Qsys[q],"kNm")


    return Qsys

#Step 5---------------------------------------------------------------------------
# Define functions for Ksys
def create_stiffness_matrix(jdat1, mdat1, mdat2, mdat3,TDOF,mcode):
    print("Step 5: Compute for Ksys-----------------------\n")
    # Initialize matrix
    nom = mdat1.shape[0]
    K = np.zeros((4,4))
    Ksys = np.zeros((TDOF,TDOF))
    mprop = np.zeros((nom,6))

    # Extract node coordinates=
    #x=jdat1[:,0] # sliced array with only x node coordinates
    #y=jdat1[:,1] # sliced array with only y node coordinates

    for i in range(0,nom):
        print ("Member: ", i+1)
        x1 = jdat1[mdat1[i,0]-1,0]
        y1 = jdat1[mdat1[i,0]-1,1]
        x2 = jdat1[mdat1[i,1]-1,0]
        y2 = jdat1[mdat1[i,1]-1,1]
        print ("joint",mdat1[i,0],":","x1:",x1,"y1:",y1)
        print ("joint",mdat1[i,1],":","x2:",x2,"y2:",y2)

        # Element length
        L = np.sqrt((x2- x1)**2 + (y2-y1)**2)
        mprop[i,0] = L

        print("L:",L,"m")

        # Cosine and sine of element angle
        l = (x2 - x1) / L
        m = (y2 - y1) / L
        mprop[i,1] = l
        mprop[i,2] = m
        print("l:",l)
        print("m:",m)

        #EI
        EIL = mdat2[i] * mdat3[i]/L
        mprop[i,3] = EIL.item()
        mprop[i,4] = (6*EIL.item())/(L**1)
        mprop[i,5] = (12*EIL.item())/(L**2)
        print("EI/L:",EIL,"kNm/rad")
        k11 = 12/(L**2)
        k12 = 6/(L**1)


        # Local stiffness matrix (4x4)
        K = EIL * np.block([[ k11 , k12 ,-k11 , k12],
                           [ k12 , 4 ,-k12 , 2],
                           [-k11 ,-k12 , k11 ,-k12],
                           [ k12 , 2 ,-k12 , 4]
                           ])
        print(K)

        print("mcode",mcode[i,0],mcode[i,1],mcode[i,2],mcode[i,3])
        for j in range(0,4):
            for k in range(0,4):
                if mcode[i,j] != 0 and mcode[i,k] != 0:
                    x = mcode[i,j]
                    y = mcode[i,k]
                    print("x,y:",x,y)
                    print("K[",j+1,k+1,"] =",K[j,k])
                    Ksys[x-1,y-1] = Ksys[x-1,y-1] + K[j,k]

        print("Ksys : \n",Ksys,"\n")

    # Return global stiffness matrix



    return Ksys , mprop

#Step 6---------------------------------------------------------------------------
# Define functions for the Gobal Displacement
def cholesky(Ksys):
    print("Step 6: Compute for Gloabal Displacement-----------------------\n")
    print("Ksys : \n",Ksys)
    n = len(Ksys)
    L = np.zeros((n, n))

    for i in range(n):
        for j in range(i+1):
            if i == j:
                L[i, j] = np.sqrt(Ksys[i, i] - np.sum(L[i, :]**2))
            else:
                L[i, j] = (Ksys[i, j] - np.sum(L[i, :] * L[j, :])) / L[j, j]
    print("L:",'\n',L)
    return L

def forward_substitution(L, Qsys):
    print("Qsys:",'\n',Qsys)

    #Get number of rows
    n = L.shape[0]

    #Allocating space for the solution vector
    y = np.zeros_like(Qsys, dtype=np.double);

    #Here we perform the forward-substitution.
    #Initializing  with the first row.
    y[0] = Qsys[0] / L[0, 0]

    #Looping over rows in reverse (from the bottom  up),
    #starting with the second to last row, because  the
    #last row solve was completed in the last step.
    for i in range(1, n):
        y[i] = (Qsys[i] - np.dot(L[i,:i], y[:i])) / L[i,i]

    print("y:",'\n',y)
    return y



def back_substitution(U, y):
    print("U:",'\n',U)

    # Number of rows
    n = U.shape[0]

    # Allocate space for the solution vector
    Dsys = np.zeros_like(y, dtype=np.double)

    # Initialize with the last row
    Dsys[-1] = y[-1] / U[-1, -1]

    # Loop over rows in reverse order
    for i in range(n - 2, -1, -1):
        Dsys[i] = (y[i] - np.dot(U[i, i + 1:], Dsys[i + 1:])) / U[i, i]

    print("Dsys:",'\n',Dsys,'\n')

    noj = jdat1.shape[0]

    for m in range(0,noj):

        print ("Joint: ", m+1)
        for n in range(0,2):
            if NDF[m,n]!=0:
                if n==0:
                    print("Displacement z",m+1,":",Dsys[NDF[m,n]-1],"m")
                if n==1:
                    print("Rotation y",m+1,":",Dsys[NDF[m,n]-1],"rad\n")
            if NDF[m,n]==0:
                if n==0:
                    print("Displacement z",m+1,":",0,"m")
                if n==1:
                    print("roation y",m+1,":",0,"rad\n")
    return Dsys

# Step 7---------------------------------------------------------------------------
# Define functions for Member Forces & Reactions
def Forces(jdat1,mdat1,mcode,mprop,NDF):
    print("Step 7: Compute for Member Forces & Reactions-----------------------\n")
    noj = jdat1.shape[0]
    nom = mdat1.shape[0]

    MDOF = np.zeros((nom,2))
    FEM = np.zeros((nom,2))
    M = np.zeros((nom,2))

    RDOF = np.zeros((nom,2))
    FER = np.zeros((nom,2))
    R = np.zeros((nom,2))

    D = np.zeros((4))

    for i in range (0,nom):
        print ("Member: ", i+1)
        for j in range (0,4):
            if mcode[i,j] == 0:
                D[j]=0
            else:
                D[j] = Dsys[mcode[i,j]-1]

        print("D1",D[0],"m")
        print("D2",D[1],"rad")
        print("D3",D[2],"m")
        print("D4",D[3],"rad")
        print("EI/L =",mprop[i,3])

        MDOF[i,0] = mprop[i,3]*(4*D[1]+2*D[3])+mprop[i,4]*(D[0]-D[2])
        MDOF[i,1] = mprop[i,3]*(2*D[1]+4*D[3])+mprop[i,4]*(D[0]-D[2])

        print("member Moment force end 1 due to DOF = ", MDOF[i,0],"kNm")
        print("member Moment force end 2 due to DOF = ", MDOF[i,1],"kNm")

        FEM[i,0] = mdat4[i,0]
        FEM[i,1] = mdat4[i,1]
        print("member Moment force end 1 due to FEM = ", FEM[i,0],"kNm")
        print("member Moment force end 2 due to FEM = ", FEM[i,1],"kNm")

        M[i,0] = MDOF[i,0]+FEM[i,0]
        M[i,1] = MDOF[i,1]+FEM[i,1]
        print("member Moment force end 1 Final = ", M[i,0],"kNm")
        print("member Moment force end 2 Final = ", M[i,1],"kNm\n")

        RDOF[i,0] = mprop[i,4]*(D[1]+D[3])+mprop[i,5]*(D[0]-D[2])
        RDOF[i,1] = -mprop[i,4]*(D[1]+D[3])+mprop[i,5]*(D[2]-D[0])

        print("member Vertical force end 1 due to DOF = ", RDOF[i,0],"kN")
        print("member Vertical force end 2 due to DOF = ", RDOF[i,1],"kN")

        FER[i,0] = mdat5[i,0]
        FER[i,1] = mdat5[i,1]
        print("member Vertica force end 1 due to FEM = ", FER[i,0],"km")
        print("member Vertica force end 2 due to FEM = ", FER[i,1],"km")

        R[i,0] = RDOF[i,0]+FER[i,0]
        R[i,1] = RDOF[i,1]+FER[i,1]
        print("member Vertica force end 1 Final = ", R[i,0],"kN")
        print("member Vertica force end 2 Final = ", R[i,1],"kN\n")

    return M, R


# Step 8---------------------------------------------------------------------------
# Define functions for Graph
def TGraph(jdat1,jdat2,mdat1,mcode):

    noj = jdat1.shape[0]
    nom = mdat1.shape[0]
    dist = np.zeros((4))
    Qsys_x = np.zeros(shape=(TDOF),dtype = float)
    Qsys_y = np.zeros(shape=(TDOF),dtype = float)

    for i in range(0,nom):
        x1 = jdat1[mdat1[i,0]-1,0]
        y1 = jdat1[mdat1[i,0]-1,1]
        x2 = jdat1[mdat1[i,1]-1,0]
        y2 = jdat1[mdat1[i,1]-1,1]

        # x axis values
        xp =np.array([x1,x2])

        # corresponding y axis values
        yp =np.array([y1,y2])

        # plotting the points
        plt.plot(xp,yp, color='green', linestyle='solid', linewidth = 2, marker = 'none', ms = 4)

        for j in range (0,4):
            if mcode[i,j] == 0:
                dist[j]=0
            else:
                dist[j] = Dsys[mcode[i,j]-1]

        dx1 = x1 + dist[0]*dscale
        dy1 = y1 + dist[1]*dscale
        dx2 = x2 + dist[2]*dscale
        dy2 = y2 + dist[3]*dscale

        # x axis values for displacement
        dxp =np.array([dx1,dx2])

        # corresponding y axis values jfor displacement
        dyp =np.array([dy1,dy2])

        # plotting the points
        plt.plot(xp,yp, color='green', linestyle='solid', linewidth = 2, marker = ',', ms = 4)

    #Adding support
    for m in range (0,noj):
        Sx1 = jdat1[m,0]
        Sx2 = jdat1[m,1]
        if jdat2[m] == 1:
            plt.plot(Sx1,Sx2, color='Blue', marker = '^', ms = 10)
        elif jdat2[m] == 2:
            plt.plot(Sx1,Sx2, color='Blue', marker = 'o', ms = 10)
        elif jdat2[m] == 3:
            plt.plot(Sx1,Sx2, color='Blue', marker = 'o', ms = 10)
        elif jdat2[m] == 4:
            plt.plot(Sx1,Sx2, color='Blue', marker = ',', ms = 10)
        elif jdat2[m] == 5:
            plt.plot(Sx1,Sx2, color='Blue', marker = 's', ms = 10)

        plt.annotate(m+1, (jdat1[m,0]+ascale/10, jdat1[m,1]+ascale/10))


    # naming the x axis
    plt.xlabel('x - axis')

    # naming the y axis
    plt.ylabel('y - axis')


    # giving a title to my graph
    plt.title('2D Beam Analysis with Graph \n by Ernel S. Filipinas in 2024')

    # function to show the plot
    plt.show()

## RUN---------------------------------------------------------------------------

# Call for the title and disclaimer
title_disclaimer()

# Step 1 - Compute for correctness of in terms of numbers
check(jdat1,jdat2,jdat5,jdat6,mdat1, mdat2, mdat3, mdat4, mdat5)

# Step 2 - Compute for NDF and TDOF
NDF,TDOF = DOF(jdat1,jdat2)

# Step 3 - Compute for Mcode
mcode, HBW = MCODE(mdat1,NDF, TDOF)

# Step 4 - Compute for Qsys
Qsys = Q(jdat1,jdat5,jdat6, NDF,TDOF,MCODE)

# Step 5 - Compute for stiffness matrix
Ksys , mprop = create_stiffness_matrix(jdat1, mdat1, mdat2, mdat3,TDOF,mcode)

# Step 6 - Compute for Gloabal Displacement
L = cholesky(Ksys)
y = forward_substitution(L, Qsys)
U = np.transpose(L)
Dsys = back_substitution(U, y)

# Step 7: Compute for Member Forces and Reaction
M,R = Forces(jdat1,mdat1,mcode,mprop,NDF)

Monday, June 24, 2024

Wind Comparison

 



ASCE7 - 10 





NSCP 2015











3-second peak gust wind speed measured at 10-meter height (above ground) over open and flat terrain

 



300/V25 = V300/V50 / V25/V50 = 1.26 = sqrt(1.6) = conversion factor of service level wind velocity to strength design wind velocity.

(V10/V50)^2 / (V1700/V50)^2 = 0.7/1.83 = 0.3825 <= conversion factor of MRI 1700 years wind load to MRI 10 years wind load.

(V10/V50)^2 / (V700/V50)^2 = 0.7/1.6 <= the 1/1.6 factor is conversion of design wind load to service load & 0.7 factor is the conversion of MRI 50 years to MRI 10 years (considered for wind drift check).

Understanding Wind Velocity Map of PAGASA and NSCP 2015

PAGASA 3-second peak gust wind speed measured at 10-meter height (above ground) over open and flat terrain with various return periods were derived in the study such as 20, 50, 100, 200 and 500 year return periods (MRI).

PAGASA Severe Wind Map link


For comparison with the NSCP 2015, please consider PAGASA maps as service level wind (ASD) speed. Note that NSCP is a strength design (LRFD) windspeed. Thus, to convert service level (ASD) wind speed to strength design (LRFD) wind, use factor of sqrt (1.6) or sqrt(1/0.6). 

ASD wind speed with MRI 20 year * sqrt(1.6)= LRFD wind speed with MRI ~200 years. 

ASD wind speed with MRI 25 year * sqrt(1.6) = LRFD wind speed with MRI ~300 years. (comparable to NSCP 2015 Category IV and V) 

ASD wind speed with MRI 50 year * sqrt(1.6)= LRFD wind speed with MRI ~700 years. (comparable to NSCP 2015 Category III) 

ASD wind speed with MRI 100 year * sqrt(1.6)= LRFD wind speed with MRI ~1700 years. (comparable to NSCP 2015 Category I and II) 

ASD wind speed with MRI 200 year * sqrt(1.6)= LRFD wind speed with MRI ~4000 years. 


For wind serviceability checks, which are short-term loadings, considers wind speed of MRI 10 years. Wind speed of MRI 10 years, V20 is 0.8387 time wind speed of MRI 50 years, V50. Thus, the wind velocity pressure factor is (V10)^2 / (V50)^2 = 0.8387^2 = 0.7 

Reference: 

1) ASCE 7-10 Minimum Design Loads for Building and other Structure. 
2) McAllister, T, Wang, N, Ellingwood, B (2018). "Risk-Informed Mean Recurrence Intervals for Updated Wind Maps in ASCE 7-16". Volume 144, Issue 5, Journal of Structural Engineering. 
3) National Structural Code of the Philippines (NSCP) 2015, 7th edition 2nd Printing. 
4) https://bagong.pagasa.dost.gov.ph/ 

Disclaimer: For academic purpose only.